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Abstract. A new Monte Carlo technique is proposed to compute directly the free energy 
difference FN+l - FN of two clusters with size N + 1 and N. The algorithm is applied to 
the two-dimensional square king model with nearest-neighbour interactions. Results are 
given for 1 s N s 45 at temperatures T ranging from 0.4 to 0.8 of the critical temperature. 
A very high accuracy (1 to 2 % )  is achieved within reasonable computer time. The results 
are compared to the prediction of the capillarity model (FN = Np + N 1 ” Z +  I T / P )  In N )  
where the intensive variables ( p :  chemical potential, Z: specific surface energy for the 
equilibrium shape, p = l / k T )  are given their equilibrium value for bulk phases, known 
exactly for the two-dimensional square king model. An excellent agreement is achieved 
from sizes N > 9 ,  yielding a value of T very close to 1.25 as predicted by recent theories. 
For smaller cluster sizes, FN is computed by direct summation of F N - , - F V .  The 
obtained energies are larger than predicted by the capillarity model. The deviation exhibits 
no systematic size dependence, but a strong temperature dependence. The existence of 
a size independent term in FN is confirmed by the values of the internal energy UN obtained 
as a by-product of the calculation. This constant may be interpreted as a curvature 
dependence of the surface free energy: the larger the curvature, the larger the surface 
free energy. 

Resume. On propose une nouvelle technique de Monte Carlo pour calculer directement 
la difference des energies libres F,v+l - FN de deux amas de taille N + 1 et N. L‘algorithme 
est applique au modele d’Ising carre, a deux dimensions, avec interaction entre premiers 
voisins. On donne des resultats pour 1 S N  S 45 a des temperatures allant de 0.4 a 0,8 
la temperature critique. Des temps de calcul raisonnables permettent d’atteindre une tres 
grand precision (1 a 2%) .  On compare les rtsultats aux predictions du modele capillaire 
(FN =Np +N1’2Z+7/P  In N a v e c p  = l /kT) oli on attribue aux parametres ( p :  potentiel 
chimique, Z tnergie specifique de surface,) leur valeur d’equilibre d a w  les phases massives, 
connues precisement pour le modele d’Ising a deux dimensions. Pour les tailles N > 9 ,  un 
accord excellent est obtenu, conduisant a une valeur de T tres voisine de 1,25 predite par 
les theories rtcentes. Pour les amas plus petits, FN est calcule par sommation directe de 
FNtl - FN. Les energies obtenuessont superieures a celles prtvues par le modele capillaire. 
L’ecart est independant de la taille mais depend fortement de la temperature. La presence 
d’un terme independant de la taille dans FN est confirmee par les valeurs de l‘energie 
interne UN obtenues ” n e  sous produit du calcul. Cette constante peut Ctre interprttie 
comme un effet de courbure sur I’tnergie de surface: l‘tnergie libre de surface croit avec 
la courbure 
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1. Introduction 

The free energy FN of a cluster of size N is the central quantity of nucleation theory 
(for a review see Binder and Stauffer 1976). The expression of FN is still controversial. 
The classical theory of nucleation rests on the ‘capillarity model’, where FN is the 
sum of a bulk term (UN) and a surface term (bN‘d-”d’  , d = dimensionality); the 
intensive variables of the model are given their bulk value. On the other hand, 
statistical mechanical treatments show that FN should contain a logarithmic term 
7p-l  In N (Fisher 1967) the coefficient of which has been recently re-evaluated 
(Wallace 1981); here p- ’  = Boltzmann constant times the absolute temperature. 

Moreover, the value of the exponent of N in the surface term is also under 
discussion (Fisher 1967, Binder and Stauffer 1972), with the possibility of a crossover 
from small N to macroscopic values when the droplet size is much larger than the 
correlation length. 

Due to the inherent difficulty in measuring FN experimentally in rea; systems, it 
has often been tried to compute FN numerically for simple model systems such as the 
Lennard-Jones-or the lattice gas model-(for a review see Burton and Briant 1977). 
However, the degree of accuracy reached up to now has not been sufficient to allow 
for a clear discrimination among conflicting models. Such is the case, in particular 
for a recent simulation (Binder and Kalos 1980) of the two-dimensional lattice gas 
model at low temperature. The authors concluded that the inadequacy of the capillarity 
model accounted for their results; also the accuracy was not sufficient to reveal the 
necessity for the logarithmic correction. The same limitation occurred in a computer 
simulation of the Coniglio-Klein model (Roussenq 1982). 

It therefore seemed useful to develop a high-accuracy computation technique for 
FN, with the aim of discriminating between controversial theories when available, and 
of producing data in fields of interest where no theories are yet available. 

Here we focus on the lattice gas model due to its simplicity and to the existence 
of rigorous expressions for the relevant thermodynamical functions in two dimensions 
(Onsager 1944). In this model, the only contribution to the cluster-free energy comes 
from the configurational partition function QN 

The sum extends to all configurations C y  of a cluster of N indistinguishable particles 
counting only one C y  out of each of translationally equivalent configurations. U ( C y )  
is the potential energy associated with Cy.  For the lattice gas model, the cluster is 
unambiguously defined as a set of occupied sites connected by nearest-neighbour 
bonds. 

For small values of N ,  QN can be computed exactly by a systematic exploration 
of all the possible Cy. This technique fails for N larger than a few units. For larger 
N values, one should turn to machine calculations. 

and 
therefore FN+1-FN from equation ( l ) ,  with high accuracy. The use of the Monte 
Carlo method to calculate free energy differences is essentially a ‘computer calorimetry’ 
(Bennett 1976, Valleau and Torrie 1977). It has already been used successfully in 
various problems of solid state physics (Jacucci and Ronchetti 1980, Jacucci and 
Quirke 1982). 

We present here a Monte Carlo technique for computing directly 



Monte Carlo computation in the Isirig model 371 

The method is applied to the two-dimensional square Ising model and to N < 50 
although much larger clusters have been studied within reasonable computer times 
(N < 100). Three temperatures have been investigated (T /T ,  = 0.801, 0.588, 0.401). 
As will be seen, the logarithmic term in FN is well identified, the coefficient T is in 
close agreement with the recent derivation (Wallace 1981, 1982, Lowe and Wallace 
1980) T = 1.25. The remaining part of FNrl - FN is well accounted for by the capillarity 
approximation provided that the anisotropy of the surface tension in the square Ising 
model is taken into account (Fisher and Ferdinand 1967, Abraham and Reed 1977) :  
the specific surface energy of the cluster must be given the value computed for a 
droplet with the equilibrium shape (Avron et a1 1982, Zia and Avron 1982).  The 
capillarity model thus constructed well represents the results down to surprisingly 
small sizes (N = 10) .  Moreover, as will be seen, a size independent term is anticipated 
in FN, the value of which is strongly temperature dependent. This term may be viewed 
as a curvature dependence of the surface specific energy. 

In the following, we first present the computation technique, then the results 
together with their fit to the capillarity model, and finally discuss the implication of 
these results. 

2. Computational method 

We want to evaluate FN as defined by equation ( 1 ) .  To be more specific, we deal 
with the binary alloy version of the Ising model, with nearest-neighbour interactions. 
We restrict ourselves to the two-dimensional simple square lattice. 

The system is a lattice with M sites, each of which is occupied by an A or a B 
particle which interacts with its four nearest neighbours with interaction energies F A A ,  

&AB, EBB.  The configuration of the system is specified by giving the particle type on 
each site. The energy of each configuration can be written: 

U =NAB;WAB + ~ ( N A E A A  +NBEBB) ( 2 )  

where N A B  is the number of AB bunds, NA, N B  the number of A, respectively B 
particles and the ordering energy WAB is given by 

( 3 )  WAB = 2EAB - ( F A A  + EBB). 
For the sake of simplicity we choose 

F A A  = E B B  = 0. (4) 

The correspondence between the above model and notations with the classical Ising 
model is given in table 1 (cf appendix 1). 

Since we are interested in the partition function of one cluster of N particles, we 
restrict the configurational space to those configurations for which each ‘solute atom’ 
B is linked to the cluster by at least one nearest-neighbour bond. This is achieved 

Table 1. Correspondence between the k ing  and the binary alloy metal. w,, is the chemical 
potential of a. 

king Alloy 
Interaction energy 45 W A B  

External field mH EBB - FAA + ( P A  - @ B ) / 2  
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by artificially setting an infinite value to the Hamiltonian of the system if more than 
one cluster is present. 

With the above correspondences, the free energy per particle for the bulk phase 
in zero field for the two systems is related by: 

p c o e x ( = p ~  = kB) is the common value of the chemical potential of A and B along the 
coexistence line. 

A direct Monte Carlo computation of Fs is not feasible for the same general 
reasons which apply to any free energy calculation (Valleau and Torrie 1977). 
However, free energy differences can be accurately computed by recently developed 
methods based on energy distribution functions (Valleau and Torrie 1977, Bennett 
1976, Jacucci and Ronchetti 1980, Jacucci and Quirke 1982). These methods consist 
in expressing the free energy difference of interest as a thermal average which can be 
accurately computed, provided that the statistical ensembles of the two systems overlap 
sufficiently. The method is outlined in appendix 2. It is shown that the free energy 
difference FII - FI may be computed from 

(6)  

where A = UII - U I  is the difference potential energy for each configuration under 
Hamiltonians I1 and I respectively, 

exp-P(FII-Fd = QII /QI  = V d A )  exp-pA)lfdA) 

where A(Cl) is the value of A in configuration Cl and XI stands for the summation 
over all configurations C,. f a ( A )  is the distribution of the energy differences between 
systems I and 11. Equation (6) may be intuitively understood as follows: the distribu- 
tions f ,(A) give the fraction of configurations in each ensemble corresponding to a 
given value of A. In ensemble 11, let i be a configuration which contributes to this 
fraction. Such a configuration appears with the weight exp(-pU;, ) / Q I I .  Similarly, a 
configuration i in ensemble I which contributes to fI(A) appears with the weight 
exp(-pU;)/QI. The ratio r of the above two statistical weights is a function of A,  QI, 

QII only. It is therefore the same for all configurations which contribute to fII(A) and 
f I (A) ,  and is written r (A)  = exp(-PA)QI/QII. The distributions fa (A) are just the sums 
of the weights in the respective ensembles, and their ratio will also coincide with r ( A ) ,  
yielding equation (7). 

The Monte Carlo procedure simply follows from this remark. The distributions f I  

and f I I  are estimated by two independent Monte Carlo runs on ensembles I and I1 
respectively. If the distributions thus obtained do overlap on some range A, QI , /QI  

can be estimated from equation (6). 
A delicate question arises in applying this method to the calculation of the cluster 

free energy difference F N + l - F N .  The system we study is made of a box of M lattice 
sites occupied by N (or N + 1) B atoms and rzspectively M - N  (or M - N  - 1) A 
atoms. From each configuration of system ( N )  we want to build one configuration of 
system (N + 1) so as to be able to define A. Similarly for building a configuration of 
system N from one configuration of system ( N  + 1).  In order to do this unambiguously, 
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we must use configurations of distinguishable particles. Simple combinatorial analysis 
shows that the ratio of the configurational partition functions for the boxes of M sites 
containing respectively N and ( N  + 1) B particles and respectively M - N and M - 
(N + 1 )  A particles for both distinguishable and indistinguishable particles is 

Q ~ + ~  M - N Q ~ + ~  
-- - 1 

Q N  N + 1  QN 

where the symbol indicates the system with distinguishable particles. It is worth 
mentioning that each class of translationally equivalent configurations of the system 
which defines a configuration of the cluster, contains M configurations so that QN+l /QN 

in equation (8) is the ratio of the partition functions of clusters with sizes N + 1 and N.  
In conclusion, introducing the distribution functions f p ~ + ~ ( A )  and f N  (A)  for distin - 

guishable particle systems, we can write, according to equations (6) and (8): 

3. Technical remarks 

In practice the computation starts with a compact cluster of N atoms B at the centre 
of a box of M lattice sites with periodic boundary conditions. The condition M >  
(N+l) ’  ensures that the cluster is free to propagate without reaching unphysical 
configurations, One A atom and one B atom are chosen at random; A and B are 
exchanged with a probability given by Glauber’s or Metropolis’ algorithm (for a review 
see Kawasaki, 1972). Note that A and B need to be nearest-neighbour atoms, so that 
a very efficient exploration of the configuration space is performed. For each configur- 
ation thus generated, we compute on the one hand what the energy change would be 
if one A atom were turned into a B atom, and on the other hand what this energy 
change would be if one B atom were turned into an A atom. Obviously this energy 
change A may take five values (A/ WAB = 1,2,3,4,00) depending: 

(i) on the number of bonds connecting the site under consideration to B atoms and 
(ii) on the possibility that this operation destroys the cluster. 

Efficiency is improved by performing the computation of A for each B and each A 
atom of each configuration of the Monte Carlo chain. The distributions fN(A)  and 
fNi l (A)  which enter equation (9) are estimaied from the histograms of A values 
constructed according to the above procedure. 

In principle, according to equation (9), five estimations FN+l -FN are so produced, 
one for each value of A according to equation (9). The technique for finding the best 
estimate of FN+l - FN together with its uncertainty has been described (Bennett 1976). 
However, for the sake of saving computer time, we only compute f ( A )  for A/  WAB = 1 : 
indeed on changing into an A,  a B atom which is linked to the cluster by one bond 
only, surely conserves the cluster and no further check is needed. The number of 
Monte Carlo steps has been typically 250000 per atom in the cluster; but due to 
various degeneracies of configurations, after the introduction of various optimisation 
procedures, the computer time has been found to increase with N as N ”  with x = 1.7 
and is typically of the order of 40 minutes on a CDC 7600 computer for a cluster of 
45 atoms. 
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4. Numerical results and interpretation 

Detailed high-accuracy calculations have been performed for /3 WAB of 2.2, 3.0 and 
4.4, corresponding to reduced temperatures (T/Tc)  of respectively 0.801,0.588,0.401. 
The cluster sizes ranged from 1 to 45. For small sizes (1 < N < 5 )  QN was computed 
analytically, and checked numerically for N = 4 and N = 5 .  Results are given in tables 
2 ( a ,  6, c (first column)) where FN+-l-FN is expressed in WAB units. As can be seen, 
the uncertainty is always smaller than 2.5%.  The other columns of tables 2 allow for 

Table 2. Measured values of F N + ,  -FN and comparison with equations (14)-(15). (a ) ,  
T / T ,  = 0,801; pWAB = 2.2; a = -0.0074, b = 0.665; r/  WAB = 0.568. 

1 0.6849 rt 0.0000 0.3937 0.6618 
2 0.5005 *O.OOOO 0.2303 0.4343 
3 0.3186* 0.0007 0.1634 0.3342 
4 0.2953*0.0011 0.1267 0.2763 
5 0.2260*0.0016 0.1036 0.2381 
6 0.2213 *0.0016 0.0876 0.2107 
7 0.1856+0.0016 0.0759 0.1899 
8 0.1714 * 0.0016 0.0669 0.1736 
9 0.1562 * 0.0015 0.0598 0.1604 

15 0.1087 0.0013 0.0367 0.1137 
19 0.0919 * 0.0015 0.0291 0.0970 
25 0.0738rt0.0017 0.0223 0.0807 
29 0.0727*0.0015 0.0193 0.073 1 
35 0.0611 +0.0015 0.0160 0.0644 
39 0.0533 *0.0014 0.0144 0.0599 
45 0.0545*0.0014 0.0125 0.0544 

Table 2. Measured values of FN+I-Fp and comparison with equations (14)-(15). ( b ) ,  
T / T ,  = 0.588; pWAB = 3; a = -0.0009; b = 1.250, T /  WAB = 0.417. 

(FN+ I -FN I /  WAB wAB) In  - N + l  (FN + 1 - FN I /  WAB 
N Measured N Equations (14)-(15) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

15 
19 
25 
29 
35 
39 
45 

0.7690~0.0000 
0.6338*0.0000 
0.3841 *0.0011 
0.4236 * 0.0008 
0.2968 *0.0023 
0.3436* 0.0023 
0.2605 20.0021 
0.2659~0.0021 
0.2448*0.0017 
0.1822 *0.0016 
0.1566 * 0.0016 
0.1404 * 0.0017 
0.1282 * 0.0016 
0.1169 * 0.0016 
0.1 104 * 0.0015 
0.1028 * 0.0017 

0.2890 
0.1691 
0.1200 
0.0931 
0.0760 
0.0643 
0.0557 
0.0491 
0.0439 
0.0269 
0.0214 
0.0164 
0.0141 
0.0118 
0.0106 
0.0092 

0.8063 
0.5658 
0.4542 
0.3874 
0.3421 
0.3089 
0.2833 
0.2628 
0.2460 
0.1849 
0.1621 
0.1393 
0.1284 
0.1158 
0.1092 
0.1010 
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Table 2. Measured values of F N + l - F N  and comparison with equations (14)-(15). (c), 
T/Tc=0.401;PWAB =4.4; a =-0.000035; b =1.644; T/W,, =0.284. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

15 
19 
25 
29 
35 
39 
45 

0.8425 *O.OOOO 
0.7503i0.0000 
0.3620i  0.0017 
0.5544 i 0.0005 
0.2791 * 0.0036 
0.4857i0.0034 
0.2583*0.0032 
0.3122i0.0022 
0.3402i0.0018 
0.2386 i 0.0023 
0.1992 *0.0023 
0.1713 *0.0023 
0.1579i 0.0025 
0.1457i0.0023 
0.1367 f 0.0025 
0.1315 i 0.0023 

0.1969 
0.1152 
0.0817 
0.0634 
0.0518 
0.0438 
0.0379 
0.0335 
0.0299 
0.0183 
0.0146 
0.0111 
0.0096 
0.0080 
0.0072 
0.0062 

0.8782 
0.6379 
0.5224 
0.4516 
0.4028 
0.3665 
0.3383 
0.3156 
0.2968 
0.2272 
0.2008 
0.1740 
0.1610 
0.1460 
0.1380 
0.1281 

the comparison of the measured values with the prediction of the capillarity approxi- 
mation. 

For FN we choose the expression 

where i'? is the number of atoms (A and B) in the cluster, ,U the chemical potential 
and is the specific surface free energy of the cluster with the equilibrium shape. 
Indeed the B cluster equilibrates with A atoms by incorporating them in proper 
proportion (with the restriction that configurations which imply an inclusion of A 
atoms containing a B inclusion are avoided: such configurations are irrelevant for the 
small clusters at low temperature which are under study here). In equation (lo), 

k = N J C  

where C is the B concentration in the cluster. In agreement with the classical capillarity 
approximation, we assume in the following: 

P = Pcoex 

where CcOex is the B concentration in the bulk B-rich phase, in equilibrium with the 
dilute phase. Expressions for pcoex and Ccoex are given in appendix 1. 

As far as the surface term is concerned, it should be stressed that the capillarity 
approximation rests on the assumption that the cluster has a macroscopic equilibrium 
shape (for a review see Martin, 1975). Due to the anisotropy of the surface tension 
in the square Ising model (Fisher and Ferdinand 1967, Abraham and Reed 1977), 
the equilibrium shape is not circular. In the case of the solid-on-solid model, an 
apprxomate expression has been given for the equilibrium shape of a ZD cluster on 
a surface with a square lattice cell and first- or first- and second-nearest-neighbour 
interaction (Burton et a1 1950-1951). More recently, an exact expression for the 
equilibrium shape of a macroscopic cluster in the two-dimensional square Ising model 
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has been derived (Zia and Avron 1982, Avron et a1 1982). By numerical integration 
along the contour of this shape, it is possible to compute the surface specific free energy 
for the equilibrium shape (see equation (3) in Zia and Avron 1982). As expected, the 
equilibrium shape is a square at 0 K and a circle at the critical temperature. In between, 
it looks like a square with rounded corners, although the curvature is everywhere finite. 
The values of the surface specific free energy thus computed are reported in table 3. 

Table 3. Theoretical values of useful parameters computed from the known solutions of 
the 2D king model. T P / w A B  is computed for T = 1.25. 

TI Tc 0.801 
P WAB 2.2 
pcoex /  WAB -0.0072 
CCO,, 0.9784 
a -0.0074 
z 0.658 

0.9891 CC,, 
b 0.665 
Pr/ WAB 0.568 

112 

0.588 
3.0 

0.9969 

1.249 
0.9984 
1.251 
0.417 

-0.0009 

-0.0009 

0.401 
4.4 

0.9998 

1.645 
1 .o 
1.645 
0.284 

-0.000035 

-0.000035 

Finally, the value of r which was initially predicted (T = 2.067, Fisher 1967) has 
been recently re-estimated as 1.25 (Wallace 1981, 1982, Lowe and Wallace 1980). 

The capillarity approximation as expressed by equation (10) together with the 
above conventions for the ingredients of equation (10) may be compared to the row 
data of table 2 noticing that 

(13) 
CL coex ' ( m - f i ) + r l n -  N + l  

P (FN+ I - F N )  = P- + P - r  
C c o e x  coex 

or equivalently 

with: 

a = ( ~ c o e x / w A B ) c 2 e x  b = ('/ wAB)c,-d,/,2 (15)  
where I; is the surface specific free energy. The values of a, b and ~ ( p  WAB)-' are 
given in table 3 for the relevant temperatures, assuming T = 1.25. 

In tables 2 (a ,  b and c )  the contribution of the last term of the RHS of equation 
(14) to the final result is shown, together with the raw data for the three reduced 
temperatures. Figure 1 shows the excellent agreement between the raw data and the 
values predicted from equations (14) and (15).  As can be seen, the agreement is very 
good down to surprisingly small sizes ( N  - 10 or even smaller at higher temperatures). 
At the lower temperature, a large scatter of the raw data appears already from N = 15.  
This deterioration should be expected since at 0 K, FN is a non-analytical function of N. 

The second point to be noticed in table 2 is that the logarithmic term in equation 
(14) brings indeed an important contribution at the temperatures under consideration: 
at the lower temperature (TIT, = 0.401) the logarithmic term contributes to FNCl -FN 
by 4 4 %  for N equal to 45 and 15 respectively, while at higher temperatures 
(T /Tc  = 0.801) this contribution ranges from 18 to 32%. 
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t 

0.11 

I c 
10 2 3  30 4 0  

N 

Figure 1. (FN+l -FN)/ WAB at three reduced temperatures: TIT,= 0.40, 0.59 and 0.80, 
as a function of the number N of B particles in the cluster. The curves are computed 
according to equations (14) and (15). The size of the symbols representing the experimental 
data ranges from 4 times to twice the experimental uncertainty. 

Clearly T = 1.25 gives a good fit of equation (14) to the data. Table 4(a)  shows 
the values of T together with their uncertainty deduced from fitting equation (14) to 
the data, with a and b given the value of table 3. As can be seen, T is certainly not 
of the order of 2 (Fisher 1967) but is very close to 1.25 (Wallace 1981, 1982, Lowe 
and Wallace 1980). 

Conversely, assuming T = 1.25, we can check for the consistency of the measured 
surface specific free energy with the value predicted by Zia and Avron (1982). This 
is done by fitting equation (14) to the data, with T = 1.25 and a being given the value 
of table 3. As shown in table 4(b), the agreement is excellent. As a by-product, the 
computation yields the internal energy of the cluster as a function of the cluster size 

UN = ( U ( c y ) ) N  (16) 
where U(CN)  is computed according to equation (2) and the average ( ) N  is taken 
along the Markov chain generated for the system with N B particles. Table 5 gives 
the results. New information may be extracted from this direct independent measure- 
ment of UN. Indeed, since 

U N  = a(pFN)/ap (17) 

Table 4. Check for the choice of T in equation (14). 
( a )  Values of T obtained giving a and b (equation (15)) their theoretical value. 

TI T, 0.801 0.588 0.401 
T 1.02 0.19 1.27 * 0.18 1.30 f 0.44 

( 6 )  Value of b in equation (14) obtained giving a and T their theoretical value (equation 
(15)), and value of 6’ in equation (19) compared to the prediction of equation (20). 

TI T, 0.801 0.588 0.401 
bmearured 0.625 *0.031 1.250h0.026 1.650*0.045 
b e q n w )  0.665 1.251 1.645 
b L u r e d  3.29i0.01 2.70i0.01 2.37i0.01 
b & m  3.10 2.68 2.35 
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Table 5. Measured values of UN (equation (16)) and deviation from the value predicted 
by equations (19)-(20): A ' =  UN (measured)-UN (equation (19)); d' (equation (21)) is 
the average value of A'. 

T/T, = 0.801 T / T ,  = 0.588 
N U/WAB (eqn (16)) A /WAB U/WAB (eqn(16)) A ' / ~ A B  

15 10.744*0.016 -1.854 9.603i0.010 -0.850 
16 11.173*0.016 -1.858 9.949*0.010 -0.849 
19 12.442h0.016 -1.819 10.936* 0.011 -0.841 
20 12.830i0.020 -1.821 11.221*0.012 -0.864 
25 14.756*0.021 -1.727 12.711*0.013 -0.817 
26 15.096i0.022 -1.733 12.972*0.014 -0.826 
29 16.154*0.024 -1.679 13.742*0.015 -0.840 
30 16.576*0.030 -1.581 14.014 * 0.015 -0.820 
35 18.205 f 0.033 -1.507 15.205 h0.015 -0.833 
36 18.505*0.034 -1.506 15.490 * 0.015 -0.778 
39 19.446i0.036 -1.442 16.126i0.016 -0.816 
40 19.665i0.040 -1.518 16.356* 0.020 -0.805 
45 21.164*0.040 -1.393 17.444 i 0.020 -0.773 
46 21.505*0.040 -1.321 17.645*0.020 -0.776 

8.635*0.010 
8.993*0.010 
9.820*0.010 

10.065 *0.010 
11.360 * 0.012 
11.606* 0.012 
12.246 * 0.01 1 
12.460 i. 0.012 
13.491i0.014 
13.707 * 0.013 
14.246* 0.013 
14.449*0.015 
15.353 k0.015 
15.530 * 0.015 

-0.483 
-0.424 
-0.442 
-0.464 
-0.423 
-0.400 
-0.434 
-0.437 
-0.440 
-0.422 
-0.460 
-0.445 
-0.445 
-0.443 

Average value of A'/WAB -1.626 -0.821 -0.440 

and writing with the notations of equation (14) 

FN/ WAB = aN + bN1/' + ( ~ W A B ) - ' T  ln(N/Ccoex) 

we get 

U,/W,, =a 'N+b'N1 ' '+c '  

with 

a ' = a  ( l+- :;:;) b ' = b ( l + E )  c ' =  
a In C c o e x  

WAB w ' 

In equations (19 )  and (20), a ' ,  h ' ,  c '  may be given the theoretical values deduced 
from equation ( 1 5 )  and the theoretical expression of pcoex, C,,,, given in appendix 1. 
The surface specific potential energy (apE/ap) has been computed by the numerical 
derivation of X. The important result is that UN/ WA, thus computed is always larger 
than the measured value (table 5 )  by a quantity which is almost size independent. It 
is therefore tempting to write 

(21) UN/ WA, = a'N + b'N"' + c '  + d' 

FN/ W A B  = aN + bN + (p WAB)-'7 In (N/Ccoex) + d. 

which would result in the following expression for the free energy FN 

(22) 

In equations (21) and (22), d' and d are related by 

d' = a(pd)/ap. (23) 

Obviously the term d does not appear in FN+I -FN which is the measured quantity. 
The term d in equation (22) can be simply interpreted as a curvature dependence of 



Monte Carlo computation in the Ising model 379 

the surface specific free energy. Indeed, writing 

c = L ( 1 f  &N-1'2)  

yields from equation (1 5 )  

A curvature dependence of X is predicted on the basis of the Gibbs thermodynamic 
description of capillarity, although this sign of the effect is controversial (Tolman 
1949, Kirkwood and Buff 1949, Oriani and Sundquist 1963). The value of E follows 
from equation (25) once d is known. d could in principle be obtained from d' by 
integration of equation (23). However, we miss a reference state for this integration 
to be performed. Nevertheless, for small clusters, we may obtain FN by summation 
of FN+l -FN starting from N = 1 where QN is known exactly. As can be seen in table 
6, the measured values are always larger than the values predicted by equation (181, 
by a quantity which remains essentially constant for cluster sizes larger than 8. The 
constants d thus obtained yield d" values according to equation (23) which compare 
very well with the d' values measured directly (table 6). The interesting result is that 
d is positive, suggesting an increase in surface tension with increasing curvature, the 
effect being larger the larger the temperature. 

Table 6 .  Estimation of the constant d in FN (equation (22)) from the difference h = FN 
(measured)-FN (equation (14)). FN (measured) = F 1  +I;:<' (F,+l -F,). The constant d 
(equations (22), (25)) is the average value of A .  Value of d' deduced from d by equation 
(23) and comparison with the value of d'  measured directly (table 5 ) .  E in the last line 
follows from equations (15) and (25): F = d / b .  

0.801 0.588 0.401 

8 1.429 0.713 0.289 
9 1.427 0.716 0.286 
10 1.423 0.715 0.329 

d 1.426 0.715 0.301 

d ' e q n  (23) -1.800 -0.902 -0.380 
c 'eqn  (20) -0.0785 -0.0088 -0.0004 1 

( c ' + d ' )  calc. -1.8785 -0.9108 -0.3804 
( c '  + d'j exp. -1.63 -0.82 -0.44 

E 

~ ~~ 

2.14 0.57 0.18 

5. Summary and conclusion 

The computational algorithm we have constructed yields a direct and efficient way 
for calculating the free energy difference of clusters of neighbouring size: FNtl -FN. 
Using a reasonable amount of computer time, an accuracy consistently better than 
2.5% and usually better than 1% may be reached for cluster sizes up to 45 particles 
at temperatures of 0.8Tc. The present work offers one more example of the efficiency 
of computer calorimetry techniques for computing free energy differences. 
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The results (FN+l-FN, 1 < N  <45,  0 .4s  T/T,<O.8) have been compared to the 
value of FN derived from a capillarity model where care is taken to evaluate all terms 
exactly. In the capillarity approximation, the free energy of a cluster is assumed to 
be that of a large equilibrium precipitate: the bulk term is the free energy per particle 
in the bulk precipitate, the surface term is the surface specific free energy of a large 
precipitate which has achieved its equilibrium shape. The logarithmic correction is 
included. All the terms of the capillarity model are given the theoretical value derived 
from the exact solution (or low-temperature expansion) of the 2D square Ising model 
with nearest-neighbour interactions. An excellent agreement with the raw data is 
found, provided that the coefficient of the logarithmic term is given the value 1.25 
predicted recently (Wallace 1981, 1982, Lowe and Wallace 1980) instead of 2.067 
which was derived from scaling arguments near T, (Fisher 1967). The ability of the 
correctly evaluated capillarity model to describe (FN+l - FN) is surprisingly good down 
to cluster sizes of N - 10. 

However, the direct computation of the internal energy UN of the clusters as a 
function of their size N, as well as the evaluation of FN by summation of FN+l-FN 
for 1 < N < 10, suggests that the surface specific free energy of the model is curvature 
dependent: it increases with increasing temperature. 

The technique developed in this work is very efficient and should be usefully 
applied to other models of interest. 

Acknowledgments 

The authors thank Drs Y Adda (SRMP, CEN Saclay) and C Moser (CECAM, Orsay) 
for their support for this study, gratefully acknowledge useful correspondence with 
Dr K Binder, and Professor R K P Zia, and stimulating discussions with Drs H 
Muller-Krumbhaar, D Stauffer and D J Wallace during the Nucleation Workshop at 
Les Houches (1981). Partial financial support from Consiglio Nazionale delle Ricerche 
is gratefully acknowledged. 

Appendix 1. Correspondence between the binary alloy and magnetic 
interpretations of the Ising model 

For a given configuration of the spins {U,},  the Ising energy is 

E? = -J 1 a p , - m H  ui 
( i i )  I 

where CTI can take the values *l, m is the magnetic moment and H is the magnetic 
field; the sum is extended to all first-neighbour pairs. The canonical partition function 
for N spins at temperature T = l/k,P is 

ZF = 1 1 . . . 1 expjPJ 1 agcj +PmH 1 (+i 
U1 U 2  UN (ij) 

where the U ' S  take up their two possible values. 
Let us write the alloy energy as 

E: = 1 [EAACPC: + EAB(CPC,B + CfC: )  +EBBC~ B B  C ,  ] 
( U )  
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where C;" = 1 and Cf = 0 if site I is occupied by A and C;" = 0 and C f  = 1 otherwise. 
If we let c;" = ;(I + U [ ) ,  c f  =$(I  -a[)  we get 

1 E: = - $ ( ~ E A B - & A A - & B B )  U I V , - ( E B B - E A A ) ~ ( + I  + ? N ( ~ E A B + E A A + E B B ) .  
( 1 1 )  I 

The number NA of atoms of type A is X I  Cp = $N +t  X I  uI and the number NB of 
atoms of type B is X I  C: = iN +i X I  ul. The grand partition function S: for the alloy 
with N sites at chemical potentials P A  and g B  and temperature T = l / k &  is 

S z = c . .  . 1 eXp[-p(E$ -NAPA-NBPB)I 
U1 UN 

=eXp(PiN[,A + P B  - ( 2 E A B  + E A A f & B B ) I } .  

Calling 

A0 = exp(P [PA + P B  - ( 2 E A B  + &AA + EBB )1/2) 

we have 
- N -  N N 
S A  - AOZI (Al.1) 

and 

E: = E ~ + ~ ( F A - F B )  X U ,  + $ N ( E A A + ~ E A B  + E B B ) ,  
I 

if we let 

4J =  AB - &AA - EBB 

and 

mH = ( P A - P B ) / ~ + E B B - E A A ,  

If we now take E A A  = EBB = 0, we see that the zero-field solution of the Ising model 
corresponds to pA = = F~~~~ for the alloy, F~~~~ being the common value of the 
chemical potentials on the coexistence line. The two systems differ for a constant 
term in the internal energy 

E: = E r  + NEAB. 

Taking the logarithm of equation (Al.1) and remembering that in zero field the 
Helmholtz free energy is equal to the Gibbs free energy we get: 

-( 1 / p )  3: = F - G 0 = -NPcoex + N E A B  - ( I / @ )  1Il z;" 
and 

I * c o e x =  - ( l / @ N )  In Z," +&AB 

so that the free energy differs in the two systems by the same constant as the internal 
energy. 

At zero field, @Goex is given by the following low-temperature expression (Sykes 
et a1 1965) 

pPcoex = *( 1 + 2u + 4tu + 12u + . . .) 
with 

U = exp - 2 @ E A B  
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while the concentration is 

C,,,.,= 1 -u2(1+4u  + 1 7 u 2 + 7 6 u 3 + .  . .). 
The equilibrium shape of a drop in the 2D Ising model is given by 

cosh [ cosh 77 = cosh 2pJ  coth 2pJ  (A1.2) 

where [ and 77 are coordinates along (111) directions (p(x i y)/2, x and y being the 
coordinates along (010) directions). The surface energy of a drop of N sites grows as 
N 1'2, the proportionality constant being 

2 = 2 w"2 

where W is the area included in the equilibrium contour given by (A1.2) (Zia and 
Avron 1982). 

Appendix 2. The method of overlapping distributions 

Consider two systems: A and B, having different Hamiltonians but defined on the 
same configuration space. Let F, = -kT In Q, be the free energy of system a (a = A  
or B )  and Q, be the configurational integral 

Q, = C  exp-PUu(Cl) .  
I  

Then 

=Qal 1 exp-P[UB(Cl)-UA(Ci) Iexp-PUA(C,) 
I 

= (exp - p ( U B  - UA ) ) A  

= OB/{ 7 exp-p[UA(c1)- CTB(c l )~  e x p - p ~ B ( ~ ~ ) ]  

= (exp P(U, - uA))i'. 
We see that the free energy difference between the two systems can be obtained as 
a thermal average in the form of 'one-sided evaluations', i.e. in the form of thermal 
averages in one of the two canonical ensembles. 

A two-sided evaluation can be also obtained. Let us introduce the fraction fm(A) 
of the configurations having the value A for U, - UA in ensemble a 

fm(A)=Qi'E{8[A-- UB(~~)+UA(C~)~~~P[-PU,(C,)I} 
f ~ ( A l =  Qi ' (exp-PA)W[A-  UB(C,)+ UA(C,)I exp[-PU~(C,)l} 

= Q A Q ~ '  (exp-pA)fA(A). 
We then obtain 

exP - [ p  (FB - FA ) 1 = QB/ QA ( exp - p A ) ~ A  (A) /fs (A). 

The advantage of the above two-sided evaluation consists in the possibility of obtaining 
accurate evaluations of the free energy difference when the two distributions fA(A) 
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and fB(h) obtained numerically as histograms in Monte Carlo runs, overlap only partly. 
In fact, in this case the one-sided evaluation will be strongly in error; on the contrary 
the two-sided evaluation will not suffer from the overlap region being restricted to a 
portion of the intervals where fa(A) and fB(A)  are numerically appreciable. 
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